COINCIDENCE POINT THEOREMS FOR MULTI-VALUED MAPPINGS IN b-METRIC SPACES VIA DIGRAPHS

نویسندگان

چکیده

In this paper, we present the concept of conventional $F_G$-contraction and prove results a new coincidence point for multi-valued in b-metric spaces endowed with digraph $G.$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coincidence Point Theorems for Multi-valued Mappings in Fuzzy Metric Spaces

In this paper, by applying the countable extensions of a t-norm, we have proved a coincidence point theorem for the fuzzy Nadler type of contraction mappings. Also, a coincidence point theorem in a fuzzy metric spaces for an implicit relation is given.

متن کامل

Multi-valued fixed point theorems in complex valued $b$-metric spaces

‎The aim of this paper is to establish and prove some results on common fixed point‎ for a pair of multi-valued mappings in complex valued $b$-metric spaces‎. ‎Our‎ ‎results generalize and extend a few results in the literature‎.  

متن کامل

Coupled coincidence point and common coupled fixed point theorems in complex valued metric spaces

In this paper, we introduce the concept of a w-compatible mappings and utilize the same to discuss the ideas of coupled coincidence point and coupled point of coincidence for nonlinear contractive mappings in the context of complex valued metric spaces besides proving existence theorems which are following by corresponding unique coupled common fixed point theorems for such mappings. Some illus...

متن کامل

Fixed point theorems on multi valued mappings in b-metric spaces

In this paper, we prove a fixed point theorem and a common fixed point theorem for multi valued mappings in complete b-metric spaces.

متن کامل

Approximation of endpoints for multi-valued mappings in metric spaces

In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.37418/amsj.10.6.7